How do you solve #x + 4y = 19# and #y = -2x - 4#?
1 Answer
May 18, 2018
Explanation:
#x+4y=19to(1)#
#y=-2x-4to(2)#
#"substitute "y=-2x-4" into equation "(1)#
#x+4(-2x-4)=19larrcolor(blue)"distribute"#
#rArrx-8x-16=19#
#rArr-7x-16=19#
#"add 16 to both sides"#
#rArr-7x=19+16=35#
#"divide both sides by "-7#
#rArrx=35/(-7)=-5#
#"substitute "x=-5" into equation "(2)#
#rArry=(-2xx-5)-4=10-4=6#
#"the point of intersection of the 2 equations "=(-5,6)#
graph{(y+1/4x-19/4)(y+2x+4)=0 [-20, 20, -10, 10]}