How do you find the second derivative of #f(x)=x^2 lnx# ?
2 Answers
Jun 1, 2018
Explanation:
By the product rule we get
simplifying
simplifying we get
Jun 1, 2018
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"given "f(x)=g(x)h(x)" then"#
#f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#
#g(x)=x^2rArrg'(x)=2x#
#h(x)=lnxrArrh'(x)=1/x#
#f'(x)=x^2. 1/x+2xlnx=x+2xlnx#
#"differentiate "2xlnx" using the "color(blue)"product rule"#
#g(x)=2xrArrg'(x)=2#
#h(x)=lnxrArrh'(x)=1/x#
#d/dx(2xlnx)=2x . 1/x+2lnx=2+2lnx#
#f''(x)=1+2+2lnx=3+2lnx#