How do you multiply #(x + 5y)^3#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Nam D. Jun 29, 2018 #x^3+15x^2y+75xy^2+125y^3# Explanation: Given: #(x+5y)^3#. Use the fact that #(a+b)^3=a^3+3a^2b+3ab^2+b^3#. Letting #a=x,b=5y#, we get: #=x^3+3*x^2*5y+3*x*(5y)^2+(5y)^3# #=x^3+15x^2y+3x*25y^2+125y^3# #=x^3+15x^2y+75xy^2+125y^3# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 2099 views around the world You can reuse this answer Creative Commons License