Perform the Gauss-Jordan Elimination on the augmented matrix
#A=((2,1,-3,|,-3),(3,2,4,|,5),(-4,-1,2,|,4))#
Make the pivot in the first column #R1larr(R1)/2#
#((1,1/2,-3/2,|,-3/2),(3,2,4,|,5),(-4,-1,2,|,4))#
Eliminate the first column #R2larr(R2-3R1)# and #R3larr(R3+4R1)#
#((1,1/2,-3/2,|,-3/2),(0,1/2,17/2,|,19/2),(0,1,-4,|,-2))#
Make the pivot in the #2#nd column swap #R2harrR3#
#((1,1/2,-3/2,|,-3/2),(0,1,-4,|,-2),(0,1/2,17/2,|,19/2))#
Eliminate the second column #R3larr(R3-1/2(R2))#, #R1larr(R1-(R2)/2)#
#((1,0,1/2,|,-1/2),(0,1,-4,|,-2),(0,0,21/2,|,21/2))#
Make the pivot in the #3rd# column #R3larr(R3*2/21)#
#((1,0,1/2,|,-1/2),(0,1,-4,|,-2),(0,0,1,|,1))#
Eliminate the #3rd # column #R1larr(R1-(R3)/2)# and #R2larr(R2+4R3)#
#((1,0,0,|,-1),(0,1,0,|,2),(0,0,1,|,1))#
The solution is
#((x),(y),(z))=((-1),(2),(1))#