What is the Binomial Expansion of #(2k+x)^n#? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Harish Chandra Rajpoot Jul 11, 2018 Binomial expansion of #(2k+x)^n# is given as #(2k+x)^n# #=^nC_0(2k)^n(x)^0+^nC_1(2k)^{n-1}(x)^1+^nC_2(2k)^{n-2}(x)^2+\ldots+^nC_r(2k)^{n-r}(x)^r+\ldots+^nC_n(2k)^{n-n}(x)^n# #=^nC_0(2k)^n+^nC_1(2k)^{n-1}x+^nC_2(2k)^{n-2}(x)^2+\ldots+^nC_r(2k)^{n-r}x^r+\ldots+^nC_nx^n# Answer link Related questions What is Pascal's triangle? How do I find the #n#th row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand #(2x + y)^4#? How do I use Pascal's triangle to expand #(3a + b)^4#? How do I use Pascal's triangle to expand #(x + 2)^5#? How do I use Pascal's triangle to expand #(x - 1)^5#? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial #(a-b)^6#? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 2837 views around the world You can reuse this answer Creative Commons License