How do you determine period, amplitude and phase shift for #y = 3 + 2 csc ( x/2 - pi/3 ) #?

1 Answer

As below.

Explanation:

Standard form of the cosecant function is #y = A csc (Bx - C) + D#

Given #y = 2 csc (x/2 - pi/3) + 3#

#A = 2, B = 1/2, C = pi/3, D = 3#

Amplitude # = |A| = # NONE for csc function.

Period # = (2pi)/|B| = (2pi) /( 1/2) = 4 pi#

Phase Shift # = -C / B = (-pi/3) / (1/2) = -(2 pi) / 3#, #color(brown)((2 pi) / 3# to the LEFT.

Vertical Shift # = D = 3#

graph{2 cos (x/2 - pi/3) + 3 [-10, 10, -5, 5]}