Show that the sum of the interior angles of a Quadrilateral is 360 degrees?

1 Answer
Jul 24, 2017

enter image source here

Consider a Quadrilateral #ABCD#. We join #AC#

For the triangle #ABC#:

We know the interior angles add up to #180^o#
# :. angleBAC + angleACB + angleABC = 180^o# ..... [A]

Similarly, for the triangle #ACD#:

# :. angleCAD + angleADC + angleACD = 180^o# ..... [B]

Now:

# angleBAD = angleBAC + angleCAD # ..... [C]
# angleBCD = angleACB + angleACD # ..... [D]

And the sum of the interior angles of the Quadrilateral #ABCD# is:

# S = angleABC + angleBCD + angleCDA + angleBAD #

Using #[C]# and #[D]# this becomes:

# S = angleABC + (angleACB + angleACD) + #
# " " angleADC + (angleBAC + angleCAD) #

# \ \ = (angleBAC + angleACB + angleABC) + #
# " " (angleCAD + angleADC + angleACD) #

and, using #[A]# and #[B]# this becomes:

# S = 180^o + 180^o #
# \ \ = 360^o \ \ # QED