Question #9bf04

1 Answer
Jun 17, 2017

#(-3x-1)/(4(x^2+2x-1))+3/(4sqrt2)lnabs((x-sqrt2+1)/(x+sqrt2+1))+C#

Explanation:

Rewriting the denominator:

#int(3x^2+5x-1)/(x^2+2x-1)^2dx=int(3x^2+5x-1)/{(x^2+2x+1)-2}^2dx=int(3x^2+5x-1)/{(x+1)^2-2}^2dx#

Let #u=x+1#, implying that #x=u-1# and #du=dx#.

#=int(3(u-1)^2+5(u-1)-1)/(u^2-2)^2du=int(3u^2-u-3)/(u^2-2)^2du#

Now let #u=sqrt2sectheta#. This implies that #u^2-2=2sec^2theta-2=2tan^2theta# and that #du=sqrt2secthetatanthetad theta#.

#=int(3(2sec^2theta)-sqrt2sectheta-3)/(2tan^2theta)^2(sqrt2secthetatanthetad theta)#

#=sqrt2/4int(6sec^3theta-sqrt2sec^2theta-3sectheta)/tan^3thetad theta#

Multiplying through by #cos^3theta/cos^3theta#:

#=1/(2sqrt2)int(6-sqrt2costheta-3cos^2theta)/sin^3thetad theta#

#=3/sqrt2intcsc^3thetad theta-1/2intcotthetacsc^2thetad theta-3/(2sqrt2)int(1-sin^2theta)/sin^3thetad theta#

Note that #3/sqrt2-3/(2sqrt2)=3/(2sqrt2)#:

#=3/(2sqrt2)intcsc^3thetad theta-1/2intcotthetacsc^2thetad theta+3/(2sqrt2)intcscthetad theta#

Find the method for integrating #csc^3theta# here.

For the second integral, let #v=cottheta# so #dv=-csc^2thetad theta#.

The integral of #csctheta# is well known. For its derivation, see here.

#=3/(2sqrt2)(-1/2)(cotthetacsctheta+lnabs(cottheta+csctheta))+1/2intvdv+3/(2sqrt2)lnabs(csctheta-cottheta)#

Note that #1/2intvdv=1/2(v^2/2)=v^2/4=cot^2theta/4#.

#=-3/(4sqrt2)cotthetacsctheta-3/(4sqrt2)lnabs(cottheta+csctheta)+3/(4sqrt2)lnabs(csctheta-cottheta)+1/4cot^2theta#

Our substitution was #u=sqrt2sectheta#, implying that #costheta=sqrt2/u#, which is a right triangle where the side adjacent to #theta# is #sqrt2#, the hypotenuse is #u#, and the side opposite #theta# is #sqrt(u^2-2)#.

Thus, #csctheta=u/sqrt(u^2-2)# and #cottheta=sqrt2/sqrt(u^2-2)#.

Also note that #-3/(4sqrt2)lnabs(cottheta+csctheta)+3/(4sqrt2)lnabs(csctheta-cottheta)=3/(4sqrt2)lnabs((csctheta-cottheta)/(cottheta+csctheta))=3/(4sqrt2)lnabs((1-costheta)/(1+costheta))#.

#=-3/(4sqrt2)(sqrt2u)/(u^2-2)+3/(4sqrt2)lnabs((1-sqrt2/u)/(1+sqrt2/u))+1/4(2/(u^2-2))#

#=-3/4(u/(u^2-2))+1/2(1/(u^2-2))+3/(4sqrt2)lnabs((u-sqrt2)/(u+sqrt2))#

#=(-3u+2)/(4(u^2-2))+3/(4sqrt2)lnabs((u-sqrt2)/(u+sqrt2))#

With #u=x+1#:

#=(-3x-1)/(4(x^2+2x-1))+3/(4sqrt2)lnabs((x-sqrt2+1)/(x+sqrt2+1))+C#