Question #9d454

2 Answers
Aug 2, 2017

See below.

Explanation:

#sin x + cos x + 2.sqrt(2) . sin x . cos x= 0# or

#cosx = -sinx/(1+2sqrt2 sinx)#

now making #y = sinx# we have

#sqrt(1-y^2) = -y/(1+2sqrt2 y)^2# or squaring both sides

#1-y^2=y^2/(1+2sqrt2y)^2# or

#(1-y^2)(1+2sqrt2y)^2-y^2=0# or

#(2y^2+2sqrt2y+1)(-4y^2+2sqrt2y+1)=0# then we have

#{(2y^2+2sqrt2y+1=0->{(y=-1/sqrt2),(y=-1/sqrt2):}),(-4y^2+2sqrt2y+1=0->{(y=1/4 (sqrt[2] - sqrt[6])),(y=1/4 (sqrt[2] + sqrt[6])):}):}#

or

#sinx={(-1/sqrt2->x = (5pi)/4 + 2 k pi),(1/4 (sqrt[2] - sqrt[6])->x = arcsin(1/4 (sqrt[2] - sqrt[6]))+2kpi),(1/4 (sqrt[2] + sqrt[6])->x = pi-arcsin(1/4 (sqrt[2] + sqrt[6]))+2kpi):}#

Aug 3, 2017

#x = (5pi)/4 + 2kpi#
#x = (7pi)/12 + 2kpi#
#x = (23pi)/12 + 2kpi#

Explanation:

#sin x + cos x + 2sqrt2.sin x.cos x = 0# (1)
Call sin x + cos x = t
Square both sides:
#(sin x + cos x)^2 = sin^2 x + cos ^2 x + 2cos x.sin x =#
#= 1 + 2cos x.sin x = t^2# -->
#2cos x.sin x = (t^2 - 1)#
#2sqrt2.cos x.sin x = sqrt2(t^2 - 1)#
The equation (1) becomes:
#t + sqrt2(t^2 - 1) = 0#
#sqrt2t^2 + t - sqrt2 = 0#
Solve this quadratic equation for t
#D = d^2 = b^2 - 4ac = 1 + 8 = 9# --> #d = +- 3#
There are 2 real roots:
# t = - b/(2a) +- d/(2a) = - 1/(2sqrt2) +- 3/(2sqrt2) = #
#t1 = - 4/(2sqrt2) = - 2/sqrt2 = - sqrt2#
#t2 = 2/(2sqrt2) = sqrt2/2#
a. #sin x + cos x = t1 = - sqrt2#
Use trig identity: #sin a + cos a = sqrt2.cos (a - pi/4)#
#cos (x - pi/4) = - sqrt2/sqrt2 = - 1# -->
#(x - pi/4) = pi# --> #x = pi + pi/4 = (5pi)/4#,
b. #sin x + cos x = t2 = sqrt2.cos (x - pi/4) = sqrt2/2#
#cos (x - pi/4) = 1/2#
#x - pi/4 = pi/3# --> #x = (pi)/3 + pi/4 = (7pi)/12#
#x - pi/4 = (5pi)/3# --> #x = (5pi)/3 + pi/4 = (23pi)/12#