What is the angle between the vectors #2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)# and #3bb(ul hat i)+4bb( ul hat j)#?

2 Answers
Sep 3, 2017

#theta = 0.37^("c")#

Explanation:

An angle between two vectors #ul(u)# and #ul(v)# can be found by the following formula

#theta =arccos((ul(u)*ul(v))/(abs(ulu) abs(ulv)))#

Where #ulu*ulv# is the scalar product of the vectors and #abs(ulu)# is the magnitude of #ulu#.

Let #ulu=((2),(2),(1))# and #ulv=((3),(4),(0))#

#ulu*ulv=2*3+2*4+1*0=14#

#absulu absulv = sqrt(2^2+2^2+1^1)sqrt(3^2+4^2) = 15#

#therefore theta = arccos(14/15)=0.37^("c")#

Sep 3, 2017

#21.0^o# to 1dp

Explanation:

The angle #theta# between two vectors #bb(vec A)# and #bb(vec B)# is related to the modulus (or magnitude) and scaler (or dot) product of #bb(vec A)# and #bb(vec B)# by the relationship:

enter image source here

# bb(vec A * vec B) = || bb(vec A) || \ || bb(vec B) || \ cos theta #

By convention when we refer to the angle between vectors we choose the acute angle.

So for this problem, let the angle between #bb(ul u)# and #bb(ul v)# be #theta# and let:

#bb(ul u) = 2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)#
#bb(ul v) = 3bb(ul hat i)+4bb( ul hat j)#

The vector norm is given by;

# || bb(ul u) || = || 2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k) || =sqrt(2^2+2^2+1^2) = 3#
# || bb(ul v) || = || 3bb(ul hat i)+4bb( ul hat j) || \ \ \ \ \ \ \ \ = sqrt( 3^2+4^2) \ \ \ \ \ \ \ \ = 5#

And the scaler (or "dot") product is:

# bb(ul u * ul v) = (2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)) * (3bb(ul hat i)+4bb( ul hat j))#
# \ \ \ \ \ \ \ \ \ \ \ = (2)(3) + (2)(4) + (1)(0) #
# \ \ \ \ \ \ \ \ \ \ \ = 6 + 8 + 0 #
# \ \ \ \ \ \ \ \ \ \ \ = 14 #

And so using # bb(vec A * vec B) = || bb(vec A) || \ || bb(vec B) || \ cos theta # we have:

# 14 = 3 * 5* cos theta #
# :. cos theta = 14/15 #
# => theta = 21.03946 ... ^o #

So the acute angle between the vectors is:

# theta_("acute") = 21.03946 ...^o #