What is the angle between the vectors #2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)# and #3bb(ul hat i)+4bb( ul hat j)#?
2 Answers
Explanation:
An angle between two vectors
Where
Let
Explanation:
The angle
# bb(vec A * vec B) = || bb(vec A) || \ || bb(vec B) || \ cos theta #
By convention when we refer to the angle between vectors we choose the acute angle.
So for this problem, let the angle between
#bb(ul u) = 2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)#
#bb(ul v) = 3bb(ul hat i)+4bb( ul hat j)#
The vector norm is given by;
# || bb(ul u) || = || 2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k) || =sqrt(2^2+2^2+1^2) = 3#
# || bb(ul v) || = || 3bb(ul hat i)+4bb( ul hat j) || \ \ \ \ \ \ \ \ = sqrt( 3^2+4^2) \ \ \ \ \ \ \ \ = 5#
And the scaler (or "dot") product is:
# bb(ul u * ul v) = (2bb(ul hat i)+2bb(ul hat j)+bb(ul hat k)) * (3bb(ul hat i)+4bb( ul hat j))#
# \ \ \ \ \ \ \ \ \ \ \ = (2)(3) + (2)(4) + (1)(0) #
# \ \ \ \ \ \ \ \ \ \ \ = 6 + 8 + 0 #
# \ \ \ \ \ \ \ \ \ \ \ = 14 #
And so using
# 14 = 3 * 5* cos theta #
# :. cos theta = 14/15 #
# => theta = 21.03946 ... ^o #
So the acute angle between the vectors is:
# theta_("acute") = 21.03946 ...^o #