A circle has a center that falls on the line #y = 4/7x +6 # and passes through # ( 2 ,1 )# and #(3 ,5 )#. What is the equation of the circle?

1 Answer
Jun 30, 2017

The equation of the circle is #(x+70/23)^2+(y-98/23)^2=19081/529#

Explanation:

Let #C# be the mid point of #A=(2,1)# and #B=(3,5)#

#C=((2+3)/2,(1+5)/2)=(5/2,3)#

The slope of #AB# is #=(5-1)/(3-2)=(4)/(1)=4#

The slope of the line perpendicular to #AB# is #=-1/4#

The equation of the line passing trrough #C# and perpendicular to #AB# is

#y-3=-1/4(x-2)#

#y=-1/4x+1/2+3=-1/4x+7/2#

The intersection of this line with the line #y=4/7x+6# gives the center of the circle.

#-1/4x+7/2=4/7x+6#

#1/4x+4/7x=7/2-6#

#23/28x=-5/2#

#x=-28/23*5/2=-70/23#

#y=4/7*(-70/23)+6=98/23#

The center of the circle is #(-70/23,98/23)#

The radius of the circle is

#r^2=(2+70/23)^2+(1-98/23)^2#

#=(116/23)^2+(75/23)^2#

#=19081/529#

The equation of the circle is

#(x+70/23)^2+(y-98/23)^2=19081/529#

graph{ ((x+70/23)^2+(y-98/23)^2-19081/529)(y-4/7x-6)(y+1/4x-7/2)=0 [-36.54, 36.55, -18.26, 18.28]}