A solid disk, spinning counter-clockwise, has a mass of #4 kg# and a radius of #1/2 m#. If a point on the edge of the disk is moving at #12/5 m/s# in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Dec 19, 2017

Answer:

The angular momentum is #=2.4kgm^2s^-1#

Explanation:

The angular velocity is

#omega=(Deltatheta)/(Deltat)#

#v=r*((Deltatheta)/(Deltat))=r omega#

#omega=v/r#

where,

#v=12/5ms^(-1)#

#r=1/2m#

So,

The angular velocity is

#omega=(12/5)/(1/2)=4.8rads^-1#

The angular momentum is #L=Iomega#

where #I# is the moment of inertia

For a solid disc, #I=(mr^2)/2#

The mass is #m=4 kg#

So, #I=4*(1/2)^2/2=0.5kgm^2#

The angular momentum is

#L=0.5*4.8=2.4kgm^2s^-1#