#Acolor(white)(00)color(black)(pi/12)color(white)(0000000)acolor(white)(00)color(white)(0)#
#Bcolor(white)(00)color(white)(pi/1 3)color(white)(0000000)bcolor(white)(00)color(black)(12)#
#Ccolor(white)(00)color(black)((7pi)/12)color(white)(0000000)c color(white)(00)color(white)(0)#
Let's find the remaining angle, #B#:
#pi-pi/12-(7pi)/12# leaves us with #pi/3#
#Acolor(white)(00)color(black)(pi/12)color(white)(0000000)acolor(white)(00)color(white)(0)#
#Bcolor(white)(00)color(black)(pi/3)color(white)(.)color(white)(0000000)bcolor(white)(00)color(black)(12)#
#Ccolor(white)(00)color(black)((7pi)/12)color(white)(0000000)c color(white)(00)color(white)(0)#
Now we should use law of sines
#(sin(pi/3))/12=(sin(pi/12))/a#
#a~~3.59#
#(sin(pi/3))/12=(sin((7pi)/12))/c#
#c~~13.4#
Now, to find the area, we use the equation #A=(hxxb)/2#, where #h# is the height.
#color(white)(a)color(white)(- - - - - - - - - -)color(black)(/)color(black)(|)#
#color(white)(a)color(white)(- - - - - - - - -)color(black)(/)color(white)(-)color(black)(|)#
#color(white)(a)color(white)(- - - - - - - -)color(black)(/)color(white)(- - .)color(black)(|)#
#color(white)(a)color(white)(- - - - - - -)color(black)(/)color(white)(- - -0)color(black)(|)#
#color(white)(- - - -)color(black)(a)color(white)(00000)color(black)(/)color(white)(- - - -0)color(black)(|)color(black)(h)#
#color(white)(a)color(white)(- - - - -)color(black)(/)color(white)(- - - - -0)color(black)(|)#
#color(white)(a)color(white)(- - - -)color(black)(/)color(white)(- - - - - -0)color(black)(|)#
#color(white)(a)color(white)(- - -)color(black)(/)color(white)(- - - - - - -0)color(black)(|)#
#color(white)(a)color(white)(- -)color(black)(/)color(white)(- - - - - - - -0)color(black)(|)#
#color(white)(-)color(black)(/)color(black)(..)color(black)(B)color(black)(........................................)#
#a=3.59#, and the angle #B# is #pi/3#. We need to find the remaining length, #h#.
#sin(pi/3)=h/(3.59)#
#sin(pi/3)xx3.59=h#
#h=3.11#
Now we can find the area:
#A=(hxxb)/2#
#A=(3.59xx13.4)/2#
#A=24.053# #units^2#