#Acolor(white)(00)color(black)(pi/12)color(white)(0000000)acolor(white)(00)color(white)(0)#
#Bcolor(white)(00)color(white)(pi/1 3)color(white)(0000000)bcolor(white)(00)color(black)(24)#
#Ccolor(white)(00)color(black)(pi/2)color(white)(0000000)c color(white)(00)color(white)(0)#
Let's find the remaining angle, #B#:
#pi-pi/12-pi/2# leaves us with #(5pi)/12#
#Acolor(white)(00)color(black)(pi/12)color(white)(00000000)acolor(white)(00)color(white)(0)#
#Bcolor(white)(00)color(black)((5pi)/12)color(white)(.)color(white)(0000000)bcolor(white)(00)color(black)(24)#
#Ccolor(white)(00)color(black)(pi/2)color(white)(000000000)c color(white)(00)color(white)(0)#
Now we could use law of sines, but I noticed something... #pi/2# is a right angle! Here's what our triangle looks like:
#color(white)(a)color(white)(- - - - - - - - - -)color(black)(/)color(black)(|)#
#color(white)(a)color(white)(- - - - - - - - -)color(black)(/)color(white)(-)color(black)(|)#
#color(white)(a)color(white)(- - - - - - - -)color(black)(/)color(white)(- - .)color(black)(|)#
#color(white)(a)color(white)(- - - - - - -)color(black)(/)color(white)(- - -0)color(black)(|)#
#color(white)(- - - -)color(black)(c)color(white)(00000)color(black)(/)color(white)(- - - -)color(white)(/)color(black)(|)color(black)(a)#
#color(white)(a)color(white)(- - - - -)color(black)(/)color(white)(- - - - -0)color(black)(|)#
#color(white)(a)color(white)(- - - -)color(black)(/)color(white)(- - - - - -0)color(black)(|)#
#color(white)(a)color(white)(- - -)color(black)(/)color(white)(- - - - - - -0)color(black)(|)#
#color(white)(a)color(white)(- -)color(black)(/)color(white)(- - - - - - - -0)color(black)(|)#
#color(white)(-)color(black)(/)color(black)()color(black)(A)color(black)(...........................................)#
#color(white)(0000000000000000) b#
What we need to find is the height, or #color(red)(a)# and the base, or #color(red)(b)#
#Acolor(white)(00)color(black)(pi/12)color(white)(00000000)acolor(white)(00)color(white)(0)#
#Bcolor(white)(00)color(black)((5pi)/12)color(white)(.)color(white)(0000000)bcolor(white)(00)color(red)(24)#
#Ccolor(white)(00)color(black)(pi/2)color(white)(000000000)c color(white)(00)color(white)(0)#
To find length #color(red)(a)#, we should use #tan#:
#tan(A)=a/b#
#tan(pi/12)=a/24#
#tan(pi/12) xx 24 = a#
#a ~~ 6.431#
Now we can find the area:
#A=(a xx b)/2#
#A=(6.431 xx 24)/2#
#A=77.172# #units^2#