Given #f(x)= -3x^2 +12x -11# and find its vertex and its x- and y-intercept?

1 Answer
Mar 9, 2017

#"Vertex"->(x,y)=(2,1)#
#y_("intercept")=-11#

#x_("intercepts")=2+sqrt(3)/3 ~~2.58" " and" " 2-sqrt(3)/3~~ 1.42#

Explanation:

Write as #y=-3x^2+12x-11#

Compare to the standardised form of #y=ax^2+bx+c#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the y-intercept")#

The y-intercept can and may be read off directly from the equation.

#->y=c#

#color(green)(=>y_("intercept")=-11)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the general shape of the curve")#

As #-3x^2# is negative the general shape of the #color(green)("curve is "nn)#
#color(green)("Thus the vertex is a maximum")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the vertex")#

As the general shape is #nn# and the vertex is above the x-axis then x-intercepts exist.

As the other solution uses the formula I will use the vertex form (completing the square).

Given: #y=-3x^2+12x-11#

#y=ax^2+bx+c_1" " ->" " y=a(x+b/(2a))^2+c_2#

Write as#" "y=-3(x^2-12/6)^2+k-11#

Set#" "k+[a(b/(2a))^2]=0#

This 'gets rid' of the error completing the square introduces

#" "k+[-3(-12/(6))^2]=0#

#k-12=0" "=>" "k=+12#

#" "y=-3(x^2-12/6)^2+k-11#

#y=-3(x-2)^2+1#

#x_("vertex")=(-1)xx(b/(2a))^2 = (-1)xx(-2)=+2#
#y_("vertex")=+1#

#color(blue)("Vertex"->(x,y)=(2,1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the x-intercepts")#

Set #y=-3(x-2)^2+1 = 0#

#(x-2)^2=1/3#

Take square roots of both sides

#x-2=+-sqrt(3)/3#

#x=2+-sqrt(3)/3#

#color(blue)(x=2+sqrt(3)/3 ~~2.58 )#to 2 decimal places

#color(blue)(x=2-sqrt(3)/3~~ 1.42)# to 2 decimal places

Tony B