How can I show that lim_(x->0)(1-cos(x^2))/(xsin(x^3))=1/2 using the Maclaurin series?

Show that lim_(x->0)(1-cos(x^2))/(xsin(x^3))=1/2 using the Maclaurin series. I know how maclaurin series works but that's ridiculous!

2 Answers
May 18, 2017

lim_(x->0) (1-cosx^2)/(xsin^3x) = 1/2

Explanation:

Consider the MacLaurin series for sint and cost:

sint = sum_(n=0)^oo (-1)^n t^(2n+1)/((2n+1)!)

cost = sum_(n=0)^oo (-1)^n t^(2n)/((2n)!)

Substituting t=x^3 in the first and t=x^2in the second, we have:

sinx^3 = sum_(n=0)^oo (-1)^n x^(6n+3)/((2n+1)!)

cosx^2 = sum_(n=0)^oo (-1)^n x^(4n)/((2n)!)

Stop the expansion of cosx^2 at the second term to have:

1-cosx^2 = 1 - (1-x^4/2+o(x^8)) = x^4/2+o(x^8)

and:

(1-cosx^2)/x = x^3/2+o(x^7)

Now use only the first term of the expansion of sinx^3:

sinx^3 = x^3-o(x^9) = x^3(1-o(x^6))

so that:

(1)/(sinx^3) = 1/(x^3(1-o(x^6))

Now consider the geometric series:

sum_(n=0)^oo x^n =1/(1-x)

so that:

1/(1-x) = 1+x+o(x^2)

and then:

1/(1-o(x^6)) = 1+o(x^6) +o(o(x^6)^2)= 1+o(x^6)

1/(sinx^3) = 1/x^3(1+o(x^6)) = 1/x^3 + o(x^3)

Finally:

(1-cosx^2)/(xsin^3x) = ( x^3/2+o(x^7) ) (1/x^3 + o(x^3) )

(1-cosx^2)/(xsin^3x) = 1/2 + x^3/2o(x^3)+(o(x^7))/x^3 + o(x^6)o(x^3 )

Now by definition of o(x^n) we have that:

lim_(x->0) x^3(o(x^3)) = 0

lim_(x->0) (o(x^7))/x^3 = 0

lim_(x->0) o(x^6)o(x^3)= 0

and then:

lim_(x->0) (1-cosx^2)/(xsin^3x) = 1/2

May 18, 2017

Numerator:
First write cos(x^2) as a MacLaurin series by doing a substitution with the MacLaurin series representation for
cosu = sum_(n=0)^(oo) frac{(-1)^n u^(2n)}{(2n)!}

So:
cos(x^2) = sum_(n=0)^(oo) frac{(-1)^n x^(4n)}{(2n)!}

= 1 - frac{x^4}{2!} + frac{x^8}{4!} - (x^12)/(6!) + ... + frac{(-1)^nx^(4n)}{(2n)!}

1 - cos(x^2) = frac{x^4}{2!} - (x^8)/(4!) + (x^12)/(6!)- ... + frac{(-1)^nx^(4n)}{(2n)!}

Denominator
Also use the MacLaurin series representation for sin(u) to substitute:
sin(u) = sum_(n=0)^(oo) frac{(-1)^n u^(2n+1)}{(2n+1)!}

sin(x^3) = sum_(n=0)^(oo) frac{(-1)^n x^(6n+3)}{(2n+1)!}

xsin(x^3) = sum_(n=0)^(oo) frac{(-1)^n x^(6n+4)}{(2n+1)!}

Expanded:
= x^4 - frac{x^10}{3!} + (x^16)/(5!) - ... + frac{(-1)^n x^(6n+4)}{(2n+1)!}

Limit:
lim_(x->0) frac{(frac{x^4}{2} - (x^8)/(4!) + (x^12)/(6!)- ... + frac{(-1)^nx^(4n)}{(2n)!})}{(x^4 - frac{x^10}{3!} + (x^16)/(5!) - ... + frac{(-1)^n x^(6n+4)}{(2n+1)!})}

By direct substitution, the numerator approaches 1/2 (because x^4 is the only term that evenly cancels out on the numerator and denominator)

The denominator approaches 0. We don't have to take into account the fact that the denominator is zero after direct substitution because the terms cancel out on the numerator and denominator.