How can you use trigonometric functions to simplify # 4 e^( ( 5 pi)/4 i ) # into a non-exponential complex number?

1 Answer
Dec 21, 2015

Use the Moivre formula.

Explanation:

The Moivre formula tells us that #e^(itheta) = cos(theta) + isin(theta)#.

Apply this here : #4e^(i(5pi)/4) = 4(cos((5pi)/4) + isin((5pi)/4))#

On the trigonometric circle, #(5pi)/4 = (-3pi)/4#. Knowing that #cos((-3pi)/4) = -sqrt2/2# and #sin((-3pi)/4) = -sqrt2/2#, we can say that #4e^(i(5pi)/4) = 4(-sqrt2/2 -i(sqrt2)/2) = -2sqrt2 -2isqrt2#.