How do I evaluate #int_1^2(y + 5y^7)/y^3 dy#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer GiĆ³ Jan 27, 2015 I would break down the fraction as: #int_1^2[y/y^3+5y^7/y^3]dy=# #int_1^2[1/y^2+5y^4]dy=# #int_1^2y^-2dy + int_1^2 5y^4dy=# #=-1/y|_1^2# #+ 5y^5/5|_1^2=# #=-1/y|_1^2# #+ y^5|_1^2=# #(-1/2+1)+(2^5-1)=31.5# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 2380 views around the world You can reuse this answer Creative Commons License