How do I find the derivative of #g(x)=ln(ln(ln(f(x))))#?

2 Answers
Apr 4, 2016

Since #d/dxlnx=1/x#, it implies that, together with use of the power rule, we get

#d/dxln(ln(lnf(x)))=1/(ln(lnf(x))) * 1/(lnf(x)) * 1/f(x) * (df)/dx#

Apr 5, 2016

#g'(x)=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))#

Explanation:

The chain rule, as it applies to the function #ln(x)#, is:

#d/dxln(color(red)u)=1/color(red)u*(color(blue)dcolor(red)u)/color(blue)dx#

We must start with the outermost #ln(u)# function:

#g'(x)=d/dxln(color(red)ln(ln(f(x))))=1/color(red)ln(ln(f(x)))*color(blue)(d/dx)color(red)(ln(ln(f(x)))#

Reapplying the rule to the new derivative, we see that

#d/dxln(color(red)ln(f(x)))=1/color(red)ln(f(x))*color(blue)(d/dx)color(red)(ln(f(x))#

Thus,

#g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*d/dxln(f(x))#

For the final time, find a last natural logarithm derivative:

#d/dxln(color(red)f(x))=1/color(red)f(x)*color(blue)(d/dx)color(red)(f(x)#

#=1/f(x)*f'(x)#

All together, we see that

#g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*1/f(x)*f'(x)#

#=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))#