How do you add #(-2-3i)+(6-9i)# in trigonometric form?

1 Answer
Jun 25, 2018

#color(blue)(=> 4 - 12 i#

Explanation:

#z= a+bi= r (costheta+isintheta)#

#r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)#

#r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))#

#r_1=sqrt(-2^2+ -3^2))=sqrt 13#
#r_2=sqrt(6^2+ -9^2) =sqrt 117#

#theta_1=tan^-1(-3/-2)~~ 236.31^@, " III quadrant"#
#theta_2=tan^-1(-9/ 6)~~ 303.69^@, " IV quadrant"#

#z_1 + z_2 = sqrt 13 cos(236.31) + sqrt 117 cos(303.69) + i (sqrt 13 sin 236.31 + sqrt 117 sin 303.69)#

#=> -2+ 6 + i (-3 - 9 )#

#color(blue)(=> 4 - 12 i#