# How do you add (-8+9i)+(4+6i) in trigonometric form?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Jun 25, 2018

color(crimson)(=> -4 + 15 i

#### Explanation:

$z = a + b i = r \left(\cos \theta + i \sin \theta\right)$

$r = \sqrt{{a}^{2} + {b}^{2}} , \text{ } \theta = {\tan}^{-} 1 \left(\frac{b}{a}\right)$

${r}_{1} \left(\cos \left({\theta}_{1}\right) + i \sin \left({\theta}_{2}\right)\right) + {r}_{2} \left(\cos \left({\theta}_{2}\right) + i \sin \left({\theta}_{2}\right)\right) = {r}_{1} \cos \left({\theta}_{1}\right) + {r}_{2} \cos \left({\theta}_{2}\right) + i \left({r}_{1} \sin \left({\theta}_{1}\right) + {r}_{2} \sin \left({\theta}_{2}\right)\right)$

r_1=sqrt(-8^2+ 9^2))=sqrt 145
${r}_{2} = \sqrt{{4}^{2} + {6}^{2}} = \sqrt{52}$

${\theta}_{1} = {\tan}^{-} 1 \left(\frac{9}{-} 8\right) \approx {131.63}^{\circ} , \text{ II quadrant}$
${\theta}_{2} = {\tan}^{-} 1 \left(\frac{6}{4}\right) \approx {56.31}^{\circ} , \text{ I quadrant}$

${z}_{1} + {z}_{2} = \sqrt{145} \cos \left(131.63\right) + \sqrt{52} \cos \left(56.31\right) + i \left(\sqrt{145} \sin 131.63 + \sqrt{52} \sin 56.31\right)$

$\implies - 8 + 4 + i \left(9 + 6\right)$

color(crimson)(=> -4 + 15 i

• 18 minutes ago
• 21 minutes ago
• 25 minutes ago
• 27 minutes ago
• 2 minutes ago
• 5 minutes ago
• 6 minutes ago
• 6 minutes ago
• 7 minutes ago
• 13 minutes ago
• 18 minutes ago
• 21 minutes ago
• 25 minutes ago
• 27 minutes ago