How do you convert #(0, 8)# to polar form?

1 Answer
May 3, 2016

Polar coordinates for Cartesian coordinates #(0,8)# are #(8,pi/2)#

Explanation:

If #(x,y)# in Cartesian form and #(r,theta)# is in polar form the relation between them is as follows:

#x=rcostheta#, #y=rsintheta#, #r^2=x^2+y^2# and #tantheta=y/x#

Here #x=0# and #y=8#, hence

#r^2=0^2+8^2=0+64=64# or #r=8#

#costheta=0/8=0# and #sintheta=8/8=1#

Hence #theta=pi/2#

Hence polar coordinates for Cartesian coordinates #(0,8)# are #(8,pi/2)#