How do you convert #(6, 6)# into polar form?

1 Answer
Jul 6, 2016

Make use of a few formulas to get #(6,6)->(6sqrt(2),pi/4)#.

Explanation:

The desired conversion from #(x,y)->(r,theta)# can be accomplished with the use of the following formulas:
#r=sqrt(x^2+y^2)#
#theta=tan^(-1) (y/x)#

Using these formulas, we obtain:
#r=sqrt((6)^2+(6)^2)=sqrt(72)=6sqrt(2)#
#theta=tan^(-1)(6/6)=tan^(-1)1=pi/4#

Thus #(6,6)# in rectangular coordinates corresponds to #(6sqrt(2),pi/4)# in polar coordinates.