How do you convert #9=(x-7)^2+(y+7)^2# into polar form?

1 Answer
Jul 15, 2017

#r^2-14r(sintheta-costheta)+89=0#

or #r^2-14sqrt2rsin(theta-pi/4)+89=0#

Explanation:

The relation between polar coordinates #(r,theta)# and rectangular coordinates #(x,y)# is given by

#x=rcostheta#, #y=rsintheta# i.e. #x^2+y^2=r^2#

Hence we can write #9=(x-7)^2+(y+7)^2# as

#(rcostheta-7)^2+(rsintheta+7)^2=9#

or #r^2cos^2theta-14rcostheta+49+r^2sin^2theta+14rsintheta+49=9#

or #r^2-14r(sintheta-costheta)+89=0#

or #r^2-14sqrt2rsin(theta-pi/4)+89=0#