How do you divide # (6+4i)/(1-i) # in trigonometric form?

1 Answer
Mar 30, 2016

#sqrt26cis1.373#

Explanation:

Please note this answer will work in radians, and to 4s.f, and will shorten #cos theta+i sin theta# to #cis theta#
.
First convert to polar form.
This yields #(sqrt52cis0.5880)/(sqrt2cis(-pi/4)#

Note that #(r_2cistheta_2)/(r_1cistheta_1)=r_2/r_1cis(theta_2-theta_1)#

Thus #(sqrt52cis0.5880)/(sqrt2cis(pi/4))=sqrt52/sqrt2cis(0.5880+pi/4)=sqrt26cis1.373#