How do you divide (x^3-7x^2+17x+13 ) / (2x+1) x37x2+17x+132x+1 using polynomial long division?

1 Answer
Jan 22, 2017

(x^3-7x^2+17x+13)/(2x+1) = color(magenta)(1/2x^2-15/4x+83/8+(color(blue)(21/8))/(2x+1) x37x2+17x+132x+1=12x2154x+838+2182x+1

Explanation:

" "x^3-7x^2+17x+13 x37x2+17x+13
color(magenta)(1/2x^2)(2x+1) ->""ul(x^3+1/2x^2) larr" Subtract"
" "0 -15/2x^2+17x+13
color(magenta)(-15/4x)(2x+1)->" "color(white)()ul(-15/2x^2-15/4x ) larr" Subtract"
" "0+83/4x+13
color(magenta)(83/8)(2x+1)->" "color(white)(xxxxxx)ul(83/4x+83/8 ) larr" Subtract"
" "color(blue)(0 +21/8) larr" Remainder"

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hence, quotient is x^3-7x^2+17x+13 and remainder is 21/8 and

(x^3-7x^2+17x+13)/(2x+1) = color(magenta)(1/2x^2-15/4x+83/8+(color(blue)(21/8))/(2x+1)