How do you divide #(x^4 + 2x^3 +3x -1 )/ (x^2 + 2)#?

2 Answers
Sep 9, 2016

#x^4+2x^3+3x-1=x^2+2x-2-(x-3)/(x^2+2)#

Explanation:

#x^4+2x^3+3x-1#

= #(x^2xx x^2)+ul(2x^2)+2x^3-ul(2x^2)+3x-1#

= #x^2(x^2+2)+x^2xx2x+ul(2x xx2)-2x^2-ul(4x)+3x-1#

= #x^2(x^2+2)+2x(x^2+2)-2(x^2+2)-4x+3x+4-1#

= #(x^2+2x-2)(x^2+2)-x+3#

Hence, #(x^4+2x^3+3x-1)/(x^2+2)#

= #x^2+2x-2-(x-3)/(x^2+2)#

Sep 9, 2016

#x^2+2x-2-(x-3)/(x^2+2)#

Explanation:

Using place keepers such as #0x^2# to make alignment and calculations more straightforward.

#" "x^4+2x^3+0x^2+3x-1#
#color(magenta)(x^2)(x^2+2) ->ul(x^4+0x^3+2x^2) larr" Subtract#
#" "0 +2x^3-2x^2+3x-1#
#color(magenta)(2x)(x^2+2) ->" "ul(2x^3+0x^2+4x ) larr" Subtract"#
#" "0 -2x^2-x-1#
#color(magenta)(-2)(x^2+2)->" "ul(-2x^2+0x-4 ) larr" Subtract"#
#color(magenta)(" "0-x+3 larr" Remainder")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)(x^2+2x-2 +[(-x+3)/(x^2+2)])#

#x^2+2x-2-(x-3)/(x^2+2)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you are not sure about the change in sign for the bracket consider this:

Multiply by (+1) but in the form of #(-1)/(-1)#

#(-1)/(-1)[(-x+3)/(x^2+2)]#

#(-1)[(-x+3)/(-1) xx1/(x^2+2)]#

#(-1)[(+x-3) xx1/(x^2+2)]#

#-[(x-3)/(x^2+2)]" "=" "-(x-3)/(x^2+2)#