How do you evaluate #tan(csc^-1(sqrt7/2))# without a calculator?

3 Answers
Aug 13, 2016

#tan(csc^(-1)(sqrt(7)/2)) = (2sqrt(3))/3#

Explanation:

Consider a triangle with sides #2#, #sqrt(3)# and #sqrt(7)#.

It is a right angled triangle, since:

#2^2+(sqrt(3))^2 = 4+3 = 7 = (sqrt(7))^2#

Since #csc theta = 1/sin theta = "hypotenuse"/"opposite"#, and #tan theta = "opposite"/"adjacent"# we have:

#"hypotenuse" = sqrt(7)#

#"opposite" = 2#

#"adjacent" = sqrt(3)#

#tan(csc^(-1)(sqrt(7)/2)) = 2/sqrt(3) = (2sqrt(3))/3#

Aug 13, 2016

#=(2sqrt3)/3#

Explanation:

Let #theta=csc^-1(sqrt(7)/2)#
or
#csctheta=sqrt7/2#
or
#1/sintheta=sqrt7/2#
or
#sintheta=2/sqrt7#
or
#theta=sin^-1(2/sqrt7)#
Hence
#p/h=2/sqrt7#
#costheta=b/h#
or
#costheta=sqrt(h^2-p^2)/h#
or
#costheta=(sqrt((sqrt7)^2-2^2))/(sqrt7)#
or
#costheta=sqrt(7-4)/sqrt7#
or
#costheta=sqrt3/sqrt7#
Therefore
#tantheta=sintheta/costheta#
or
#tan theta=(2/sqrt7)/((sqrt3)/sqrt7)#
or
#tan theta=2/sqrt3#
or
#tan(csc^-1(sqrt(7)/2))=2/sqrt3#
or
#tan(csc^-1(sqrt(7)/2))=(2sqrt3)/3#

Sep 25, 2016

#tan(csc^-1(sqrt7/2))#

#=tan(cot^-1(sqrt((sqrt7/2)^2-1)))#

#=tan(cot^-1sqrt(7/4-1))#

#=tan(cot^-1sqrt(3/4))#

#=tan(tan^-1(2/sqrt3))=2/sqrt3=(2sqrt3)/3#