How do you express #cos( (3 pi)/ 2 ) * cos (( 11 pi) /6 ) # without using products of trigonometric functions?
1 Answer
Mar 5, 2016
Explanation:
Here is a graph of
graph{cos(x) [-10, 10, -5, 5]}
Since
#cos((3pi)/2) xx cos((11pi)/6) = 0 xx cos((11pi)/6)#
#=cos((11pi)/6)0#
Btw
#=cos(-pi/6)#
#=cos(pi/6)#
#=sqrt3/2#