How do you express #cos( (3 pi)/ 2 ) * cos (( 13 pi) / 8 ) # without using products of trigonometric functions?

2 Answers
Mar 27, 2016

Answer is #0#. Please follow the following process.

Explanation:

We know #cos(alpha+beta)=cosalphacosbeta-sinalphasinbeta#
and #cos(alpha-beta)=cosalphacosbeta+sinalphasinbeta#

Adding two we get #cos(alpha+beta)+cos(alpha-beta)=2cosalphacosbeta# or

#cosalphacosbeta=1/2{cos(alpha+beta)+cos(alpha-beta)}#

Hence #cos((3pi)/2)cos((13pi)/8)=1/2{cos((3pi)/2+(13pi)/8)+cos((3pi)/2-(13pi)/8)}#

= #1/2{cos((12pi)/8+(13pi)/8)+cos((12pi)/8-(13pi)/8)}#

= #1/2{cos((25pi)/8)+cos(-pi/8)}#

= #1/2{cos(2pi+pi+pi/8)+cos(pi/8)}#

= #1/2{-cos(pi/8)+cos(pi/8)}=0#

Mar 27, 2016

Zero

Explanation:

Trig table --># cos ((3pi)/2)# = 0#, therefor, the product is equal to zero.