How do you express #sin(pi/ 8 ) * cos(( pi / 4 ) # without using products of trigonometric functions?

1 Answer
Dec 31, 2016

#(sqrt2/2)(sqrt(2 - sqrt2)/2)#

Explanation:

#P = sin (pi/8).cos (pi/4)#
Trig table gives #cos (pi/4) = sqrt2/2#, then P can be expressed as:
#P = (sqrt2/2)sin ((pi)/8)#.
We can evaluate #sin (pi/8)# by applying the trig identity:
#2sin^2 a - 1 - cos 2a#
#2sin^2 (pi/8) = 1 - cos (pi/4) = 1 - sqrt2/2 = (2 - sqrt2)/2#
#sin^2 (pi/8) = (2 - sqrt2)/4#
#sin (pi/8) = +- (sqrt(2 - sqrt2)/2)#
Since #sin (pi/8)# is positive, take the positive value.
Finally:
#P = ((sqrt2)/2)(sqrt(2 - sqrt2)/2)#