How do you factor #-4x^4y^4+36 #?
2 Answers
We first rewrite into
Explanation:
For the moment we put the first
Then we can see that
Putting this al together we get:
This cannot be further factorized without using radicals.
#-4x^4y^4+36#
#=-4(x^2y^2-3)(x^2y^2+3)#
#=-4(xy-sqrt(3))(xy+sqrt(3))(x^2y^2+3)#
#=-4(xy-sqrt(3))(xy+sqrt(3))(xy-sqrt(3)i)(xy+sqrt(3)i)#
Explanation:
I will use the difference of squares identity a few times, so here it is:
#a^2-b^2 = (a-b)(a+b)#
Since I would like to keep the higher degree terms on the left, I choose to separate out a factor of
#-4x^4y^4+36#
#=-4(x^4y^4-9)#
#=-4((x^2y^2)^2-3^2)#
#=-4(x^2y^2-3)(x^2y^2+3)#
If we allow irrational coefficients we can go a little further:
#=-4((xy)^2-(sqrt(3))^2)(x^2y^2+3)#
#=-4(xy-sqrt(3))(xy+sqrt(3))(x^2y^2+3)#
If we allow Complex coefficients we can get a little further still:
#=-4(xy-sqrt(3))(xy+sqrt(3))((xy)^2-(sqrt(3)i)^2)#
#=-4(xy-sqrt(3))(xy+sqrt(3))(xy-sqrt(3)i)(xy+sqrt(3)i)#