How do you factor #5x^4-40x+10x^3-20x^2#?
1 Answer
Mar 27, 2018
Explanation:
#"take out a "color(blue)"common factor "5x#
#5x(x^3-8+2x^2-4x)#
#"note that "2^3-8+2(2)^2-4(2)=0#
#rArr(x-2)" is a factor of "x^3+2x^2-4x-8#
#"divide "x^3+2x^2-4x-8" by "(x-2)#
#rArrcolor(red)(x^2)(x-2)color(magenta)(+2x^2)+2x^2-4x-8#
#=color(red)(x^2)(x-2)color(red)(+4x)(x-2)color(magenta)(+8x)-4x-8#
#=color(red)(x^2)(x-2)color(red)(+4x)(x-2)color(red)(+4)(x-2)cancel(color(magenta)(+8))cancel(-8)#
#rArrx^3+2x^2-4x-8=(x-2)(color(red)(x^2+4x+4))#
#color(white)(xxxxxxxxxxxxxxx)=(x-2)(x+2)^2#
#rArr5x^4-40x+10x^3-20x^2#
#=5x(x-2)(x+2)^2#