# How do you factor 6xy+15x?

Apr 9, 2017

$3 x \left(2 y + 5\right)$

#### Explanation:

Both terms have the variable $x$,

$x \left(6 y + 15\right)$

Both terms can be factored by $3$,

$3 x \left(2 y + 5\right)$

You can check if you factored correctly by multiplying through the brakctets,

$\left(3 x \cdot 2 y\right) + \left(3 x + 5\right)$

$= 6 x y + 15 x$

Apr 9, 2017

$3 x \left(2 y + 5\right)$

#### Explanation:

Let's expand everything we can and then factor out common factors:
$6 x y + 15 x$
$2 \cdot \textcolor{b l u e}{3} \cdot \textcolor{g r e e n}{x} \cdot y + \textcolor{b l u e}{3} \cdot 5 \cdot \textcolor{g r e e n}{x}$

There are $x$s in both values and a $3$ for both. Let's factor those out:
$3 \cdot x \left(2 \cdot y + 5\right)$
$3 x \left(2 y + 5\right)$.

Just to make sure the new expression is still equal tothe old one, let's distribute the $3 x$ int $2 y + 5$. We should get $6 x y + 15 x$

$3 x \left(2 y + 5\right)$
$2 y \cdot 3 x + 5 \cdot 3 x$
$6 x y + 15 x$
Yep. it's still the same! Good job!