How do you factor #6y^6-5y^3-4 # ?
1 Answer
May 7, 2018
Explanation:
#"using a substitution reduces the expression to a"#
#"usual quadratic"#
#"let "u=y^3#
#rArr6y^6-5y^3-4=6u^2-5u-4#
#"using the a-c method for factoring"#
#"the factors of the product "6xx-4=-24#
#"which sum to - 5 are + 3 and - 8"#
#"split the middle term using these factors"#
#6u^2+3u-8u-4larrcolor(blue)"factor by grouping"#
#=color(red)(3u)(2u+1)color(red)(-4)(2u+1)#
#"take out the "color(blue)"common factor "(2u+1)#
#=(2u+1)(color(red)(3u-4))#
#"change the substitution back into terms in y"#
#rArr6y^6-5y^3-4=(2y^3+1)(3y^3-4)#