How do you factor by grouping #x^3+4x^2+8x+32#?

2 Answers
May 29, 2018

Answer:

#(x^2 + 8 )(x+4 ) #

Explanation:

Factor each half of the expression individually first:

#=> x^2 color(blue)(( x + 4)) + 8color(blue)( ( x +4)) #

Hence #(x+4) # is common in each term, factor this out:

#=> color(blue)(( x+4 )) [ x^2 + 8 ] #

#color(red)(= (x^2 + 8 ) ( x + 4) #

In terms of real numbers, this is factorised

May 29, 2018

Answer:

#(x+4)(x^2+8)#

Explanation:

#=color(red)(x^2)(x+4)color(red)(+8)(x+4)#

#"take out the "color(blue)"common factor "(x+4)#

#=(x+4)(color(red)(x^2+8))#

#x^3+4x^2+8x+32=(x+4)(x^2+8)#