How do you factor #x^3 - 2x^2 - 35x#?

2 Answers
Apr 8, 2018

Answer:

#x(x-7)(x+5)#

Explanation:

First, factor out the GCF (x)

#x(x^2-2x-35) rarr# Now you can use several different methods to factor the #x^2-2x-35#. You can use the "big X" method, the quadratic formula, or graphing.

Here I'll use the "big X" method.

Quadratic equation form: #ax^2+bx+c#

Big X method: find two numbers that multiply to #a*c#, in this case -35 (#1*-35#) and add up to #b#, in this case #-2#.

#-7*5=-35#

#-7+5=-2#

The two numbers are -7 and 5

#x^2-2x-35# can be factored to #(x-7)(x+5)#

#x(x-7)(x+5)#

Apr 8, 2018

Answer:

#x#(#x-7#)(#x+5#)

Explanation:

you take the #x# as a common factor to be:
#x#(#x^2-2x-35#)=0
then factor out what's between the brackets:
#x#(#x-7#)(#x+5#)