How do you factor #x^3+3x^2-6x-8#?
2 Answers
Explanation:
By trial and error
let
let
so
so
Then you have to make a long division
Then factorise
and finally
graph{x^3+3x^2-6x-8 [-10, 10, -5, 5]}
Explanation:
Group the terms in 'pairs' as follows.
#[x^3-8]+[3x^2-6x]# Now, the first group is a
#color(blue)"difference of cubes"# and factorises, in general, as.
#color(red)(bar(ul(|color(white)(2/2)color(black)(a^3-b^3=(a-b)(a^2+ab+b^2))color(white)(2/2)|)))# Now
#(x)^3=x^3" and " (2)^3=8#
#rArra=x" and " b=2#
#x^3-8=(x-2)(x^2+2x+2^2)=(x-2)(x^2+2x+4)# The second group has a
#color(blue)"common factor"# of 3x.
#rArr3x^2-6x=3x(x-2), "hence"#
#x^3-8+3x^2-6x=(x-2)(x^2+2x+4)+3x(x-2)# There is now a
#color(blue)"common factor " (x -2)#
#color(red)((x-2))(color(magenta)(x^2+2x+4+3x))=(x-2)(x^2+5x+4)#
#=(x-2)(x+1)(x+4)#