How do you factor #x^3 - 6x^2 + 3x - 10#?
1 Answer
See explanation...
Explanation:
Use Cardano's method.
First a simple Tschirnhaus transformation, to eliminate the term of degree
#0 = x^3-6x^2+3x-10=(x-2)^3-9(x-2)-20#
Let
#t^3-9t-20 = 0#
Next substitute
#u^3+v^3+3(uv-3)(u+v)-20 = 0#
Add the constraint
#u^3+(3/u)^3-20=0#
Multiply through by
#(u^3)^2-20(u^3)+27 = 0#
Use the quadratic formula to find:
#u^3 = (20+-sqrt(20^2-(4*1*27)))/(2*1)#
#=10+-sqrt(400-108)/2#
#=10+-sqrt(292)/2#
#=10+-sqrt(4*73)/2#
#=10+-sqrt(73)#
The derivation was symmetric in
#x_1 = 2+root(3)(10-sqrt(73))+root(3)(10+sqrt(73))#
and Complex zeros:
#x_2 = 2+omega root(3)(10-sqrt(73))+omega^2 root(3)(10+sqrt(73))#
#x_3 = 2+omega^2 root(3)(10-sqrt(73))+omega root(3)(10+sqrt(73))#
where
Then:
#x^3-6x^2+3x-10 = (x-x_1)(x-x_2)(x-x_3)#