How do you factor #x^5 -4x^4 + 8x^3 - 14x^2 +15x -6 #?
1 Answer
Find factor
#x^5-4x^4+8x^3-14x^2-14x^2+15x-6#
#= (x-1)(x-1)(x-2)(x^2+3)#
Explanation:
#f(x) = x^5-4x^4+8x^3-14x^2-14x^2+15x-6#
First notice that
So
#f(x) = (x-1)(x^4-3x^3+5x^2-9x+6)#
Again, the remaining quartic factor is divisible by
#x^4-3x^3+5x^2-9x+6 = (x-1)(x^3-2x^2+3x-6)#
The remaining cubic factor is factorizable by grouping:
#x^3-2x^2+3x-6 = (x^3-2x^2)+(3x-6) = x^2(x-2)+3(x-2)#
#= (x^2+3)(x-2)#
The remaining quadratic factor has no linear factors with Real coefficients since
Putting this together we get:
#x^5-4x^4+8x^3-14x^2-14x^2+15x-6 = (x-1)(x-1)(x-2)(x^2+3)#
If you allow Complex coefficients then you can factor further using:
#x^2+3 = (x-sqrt(3)i)(x+sqrt(3)i)#
So:
#x^5-4x^4+8x^3-14x^2-14x^2+15x-6#
#= (x-1)(x-1)(x-2)(x-sqrt(3)i)(x+sqrt(3)i)#