How do you find #dy/dx# by implicit differentiation given #y=cos(x+y)#?
1 Answer
Explanation:
Method 1: Expand and use the product rule
We expand using the formula
#y = cosxcosy - sinxsiny#
#d/dx(y) = d/dx(cosxcosy - sinxsiny)#
#d/dx(y) = d/dx(cosxcosy) - d/dx(sinxsiny)#
Remember that we are differentiating with respect to
#1(dy/dx) = -sinx(cosy) - siny(dy/dx)(cosx) - (cosx(siny) + cosy(sinx)dy/dx)#
Solve for
#1(dy/dx) + sinycosx(dy/dx) + cosysinx(dy/dx) = -sinxcosy - cosxsiny#
#dy/dx(1 + sinycosx + cosysinx) = -(sinxcosy + cosxsiny)#
#dy/dx = -(sinxcosy + cosxsiny)/(1 + sinycosx + cosysinx)#
#dy/dx= -(sin(x + y))/(1 + sin(x + y))#
Method 2: Use the chain rule
Let
The derivative is given by
#dy/dx = -sinu xx (1 + dy/dx)#
#dy/dx = -sinu - dy/dxsinu#
#dy/dx +dy/dxsinu = -sinu#
#dy/dx(1 +sinu) = -sinu#
#dy/dx = -sinu/(1+ sinu)#
Since
#dy/dx = -sin(x + y)/(1 + sin(x + y))#
Hopefully this helps!