How do you find the angel between u=<-6,-2> and v=<2,12>?

1 Answer
Nov 21, 2016

The angle is #117.9#º

Explanation:

The angle is given by the dot product definition

#vecu.vecv=∥vecu∥*∥vecv∥*costheta#

Where #theta# is the angle between the 2 vectors.

The dot prduct is #vecu.vecv =〈-6,-2〉.〈2,12〉=(-12-24)=-36#

The modulus of #vecu=∥〈-6,-2〉∥=sqrt(34+4)=sqrt40#

The modulus of #vecv=∥〈2,12〉∥=sqrt(4+144)=sqrt148#

Therefore, #costheta=vecu.vecv/(∥vecu∥*∥vecv∥)#

#=-36/(sqrt40*sqrt148)=-0.47#

#theta=117.9#º