How do you find the angle between the vectors #v=3i-2j, w=2i+2j#?
2 Answers
Compute the dot-product:
Compute the magnitudes:
Use the formula,
Explanation:
#"from the definition of the "color(blue)"scalar (dot) product"#
#• ulv.ulw=|ulv||ulw|costheta#
#rArrcostheta=(ulv.ulw)/(|ulv||ulw|)to(color(red)(1))#
#"where " theta" is the angle between " ulv" and " ulw#
#"also if " ulv=((x_1),(y_1))" and " ulw=((x_2),(y_2))#
#rArrulv.ulw=x_1x_2+y_1y_2#
#|ulv|=sqrt(x_1^2+y_1^2),|ulw|=sqrt(x_2^2+y_2^2)#
#"here" ulv=((3),(-2))" and " ulw=((2),(2))#
#rArrulv.ulw=(3xx2)+(-2xx2)=2#
#rArr|ulv|=sqrt(3^2+(-2)^2)=sqrt13#
#rArr|ulw|=sqrt(2^2+2^2)=sqrt8#
#"substitute these results into "(color(red)(1))#
#rArrcostheta=2/(sqrt13xxsqrt8)#
#rArrtheta~~78.69^@" to 2 dec. places"#