How do you find the antiderivative of #(5x^2)/(x^2 + 1)#?

1 Answer
Feb 20, 2015

I would start by factorizing out #x^2# from the denominator:

#int(5x^2)/(x^2+1)dx=int(5x^2)/(x^2(1+1/x^2))dx=int5/(1+1/x^2)dx=#

now set: #1/x^2=t^2#
#x=1/t# and #dx=-1/t^2dt#

The integral becomes:

#5int1/(1+t^2)*(-1/t^2)dt=-5[int1/(t^2(1+t^2))dt]=#

#=-5{int[1/t^2-1/(1+t^2)]dt}=#

#=-5[t^(-1)/-1-arctan(t)]=# going back to #x#

#5x+5arctan(1/x)+c#