How do you find the antiderivative of #int xsqrt(1-x^2) dx#?

2 Answers
Feb 10, 2017

The answer is #=-1/3(1-x^2)^(3/2)+C#

Explanation:

We perform this by substitution

Let #u=1-x^2#

#du=-2xdx#

#xdx=-1/2du#

Therefore,

#intxsqrt(1-x^2)dx=-1/2intsqrtudu#

#=-1/2*u^(3/2)/(3/2)#

#=-1/3(1-x^2)^(3/2)+C#

Feb 10, 2017

#-1/3(1 - x^2)^(3/2) + C#

Explanation:

Here's an alternative answer using trig substitution.

Let #x = sintheta# . Then #dx = costhetad theta#.

#=intsinthetasqrt(1 - sin^2theta) * costheta d theta#

#=intsintheta sqrt(cos^2theta) * costheta d theta#

#=int sintheta costhetacostheta d theta#

#=int sin thetacos^2theta d theta#

Now make a substitution. Let #u = costheta#, then #du = -sintheta d theta -> d theta = (du)/(-sintheta)#.

#=int sin theta cos^2theta * (du)/(-sintheta)#

#=-int u^2du#

#=-1/3u^3 + C#

#=-1/3cos^3theta + C#

We know from our initial substitution that #x/1 = sintheta#. This means that the side adjacent #theta# in our imaginary triangle measures #sqrt(1 - x^2)#. Therefore, #costheta = sqrt(1 - x^2)#

#=-1/3(1 - x^2)^(3/2) + C#

Hopefully this helps!