How do you find the area of an isosceles triangle if the two equal sides are 10cm and the base is 12cm?

2 Answers
Jul 22, 2015

I found: #48"cm"^2#

Explanation:

Considering:
enter image source here
applying Pythagoras on half triangle you get:
#h^2+6^2=10^2#
#h=8cm#
So #Area=(basexxheight)/2=(12xx8)/2=48"cm"^2#

Jul 22, 2015

Area #= 48# sq. cm.
#color(white)("XXXX")##color(white)("XXXX")#(Using Heron's formula)

Explanation:

As an alternate solution method:

Heron's Formula for the area of a triangle with sides #a, b, c#
#color(white)("XXXX")##A = sqrt(s(s-a)(s-b)(s-c))#
#color(white)("XXXX")##color(white)("XXXX")#where #s# is the semi-perimeter (i.e. #s= (a+b+c)/2#

In this case:
#color(white)("XXXX")##s = 16#

#color(white)("XXXX")##A = sqrt(16(6)(6)(4))#
#color(white)("XXXX")##color(white)("XXXX")##= sqrt(4^2*6^2*2^2)#
#color(white)("XXXX")##color(white)("XXXX")##=48#