How do you find the coefficient of #x^2# in the expansion of #(x+3)^5#?

1 Answer
Feb 27, 2017

Coefficient of #x^2# is #270#

Explanation:

Binomial expansion of #(x+a)^n# is

#Sigma_(r=0)^(r=n)((n),(r))x^(n-r)a^r#, where #((n),(r))=(n!)/((n-r)!r!)#

Here #n=5# and as we seek coefficient of #x^2#,

#n-r# i.e. #5-r=2# or #r=3# and #a=3#

Hence coefficient of #x^2# is

#((n),(r))a^r=((5),(3))3^3=(5!)/(2!3!)27=(5xx4xx3xx2xx1)/(2xx1xx3xx2xx1)xx27=270#