How do you find the derivative of #1/(2x)#?

2 Answers
Jul 9, 2016

#-1/(2x^2)#

Explanation:

Differentiate using the #color(blue)"power rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(ax^n)=nax^(n-1))color(white)(a/a)|)))#

Rewrite the function as.

#1/(2x)=1/2xx1/x=1/2xxx^-1=1/2x^-1#

#rArrd/dx(1/2x^-1)=-1xx1/2x^(-1-1)=-1/2x^-2#

#rArrd/dx(1/(2x))=-1/2x^-2=-1/(2x^2)#

Jul 9, 2016

ALTERNATIVE APPROACH

Explanation:

By the quotient rule:

#(1/(2x))' = ((0 xx 2x) - (1 xx 2))/(2x)^2#

#(1/(2x))' = -2/(4x^2)#

#(1/(2x))' = -1/(2x^2)#

Hopefully this helps!