How do you find the domain & range for # 3 Cot(2x)#?

1 Answer
Jul 23, 2018

Domain : #x in ( -oo, oo )#, sans #uarr# asymptoiic #darr# #x = k(pi/2)#,
#k = 0, +-1, +-2, +-3, ...#
Range: #y notin ( -1/2, 1/2 )#

Explanation:

#y = 3 cot 2x = 3 (cos (2x)/sin (2x)) in ( - oo. oo )#, ,

#x ne # zeros of the denominator #sin 2x#

# rArr x ne# an integer multiple of #(pi/2)#

The period

= the common period of #sin 2x and cos 2x = (2pi)/2 = pi#

See graph. revealing all these aspects:
graph{(y sin (2x) - 3 cos (2x) )= 0[ -10 10 -10 10]}