There are 2 possible answers:
First solution
#sin (arcsin (3/5)+arctan (-2))#
#sin (A+B)#
Let #A=arcsin (3/5)# and #B=arctan (color(blue)(-2)/1)#
then #sin A=3/5# and
computed using Pythagorean relation #c^2=a^2+b^2#
#cos A=4/5#
also
#sin B=(-2)/sqrt5#
#cos B=1/sqrt5#
compute #sin (A+B)#
#sin (A+B)=sin A cos B + cos A sin B#
#sin (A+B)=3/5* 1/sqrt5 + 4/5 *(-2)/sqrt5=-5/(5sqrt5)#
#sin (A+B)=-1/sqrt5=-sqrt5/5#
#color(green) ("The 4th quadrant angle")=A+B=-63.4349^@#
second solution
#sin (arcsin (3/5)+arctan (-2))#
#sin (A+B)#
Let #A=arcsin (3/5)# and #B=arctan (2/color (blue)(-1))#
then #sin A=3/5# and
computed using Pythagorean relation #c^2=a^2+b^2#
#cos A=4/5#
also
#sin B=2/sqrt5#
#cos B=(-1)/sqrt5#
compute #sin (A+B)#
#sin (A+B)=sin A cos B + cos A sin B#
#sin (A+B)=3/5* (-1)/sqrt5 + 4/5 *2/sqrt5=5/(5sqrt5)#
#sin (A+B)=1/sqrt5=sqrt5/5#
#color(green) ("The 2nd quadrant angle")=A+B=116.565^@#
Have a nice day !!! from the Philippines